Water Cooling for the LHC

Mats Wilhelmsson CERN

April 2004
Content:

CERN- The Large Hadron Collider

THE Recovery/transformation of LEP

LHC-Users for water cooling

Water cooling systems for the LHC
 - Raw- and primary water systems
 - Demineralised water systems
 - Chilled- and mixed water systems

Reject water

Controls
From LEP to LHC
The LEP Tunnel

Desy workshop
20.04.2004
The LEP Tunnel
Recovery of LEP Magnets
The LEP tunnel

P1

P2

P3

P4

P5

P6

P7

P8
The LHC tunnel

Système d'accélération haute fréquence

Nettoyage de faisceau Point 3

Point 4

CMS Point 5

Point 6

Extraction et absorption des faisceaux

Point 7

Nettoyage de faisceau

Point 8 LHC-B

TL 2 Injection

Point 2 ALICE

Tunnel du LEP/LHC

TL 8 Injection

Point 1 ATLAS

Tunnel du SPS

Desy workshop 20.04.2004

Vue d'ensemble des ouvrages souterrains du LHC
LHC Experimental site (point 8)
Consumers of water cooling
Cooling the LHC
Main consumers

Cryogenic installations
Cooling the LHC: Cryogenic installations
Cooling at LHC
Main consumers

Electric power supplies (power converters)

Desy workshop
20.04.2004
Warm magnets
Cooling at LHC consumers

Air treatment

Desy workshop
20.04.2004
Cooling at LHC
Main consumers

The LHC Detectors

Desy workshop
20.04.2004
LHC Raw water cycle

Raw water

Heat recovery

Water chillers

Cooling towers

Surface

Underground

Rejects
Raw water pumps point 4
The LHC cooling chain

- Heat sink
- Production
- Distribution
- Compressed air
- Heat recovery
- Water chillers
- Cooling towers

Surface

Underground

Desy workshop
20.04.2004
The LHC Cooling system
Primary water circuit

MAIN CHARACTERISTICS

Temperature at the cooling tower
- Outlet 24°C
- Inlet 34°C
- Set point 23°C
- Tolerance ± 1°C

Available pressure difference for each user 3 bar

Fig. 1
Primary Circuit Point 1
LHC Cooling towers

Caracteristics

Water T 24/34°C

Wet bulb T 20°C
Cooling tower at LHC point 4
Heat exchanger primary system point 4
Demineralised water circuits

Primary water production
SF Building
13.95 MW / 24-34°C - 1196 m³/h

Surface

Underground

Demineralised Water
Magnet cooling for L3
4 MW / 27-45°C / 190 m³/h

Demineralised Water
circuit T1 2
2.2 MW / 27-42°C / 129 m³/h

Demin. Water
ALICE muon magnet
3.75 MW / 47-20°C
120 m³/h

Chilled Water

Demineralised Water for
"Machine" cooling sector 2.1
2.15 MW / 27-37°C / 185 m³/h

Demineralised Water for
"Machine" cooling sector 2.3
2.8 MW / 27-37°C / 242 m³/h

Demineralised Water for L3
cooling jacket
0.18 MW / 19-29°C / 14 m³/h

Mixed Water
LHC Cooling

Demineralised water

Water resistivity

1) Production resistivity = 10-20 MΩ·cm
 (Corresponding to conductivity 0.1 -0.05 µS/cm)
2) Operational resistivity = between 3 and 1 MΩ·cm
3) Alarm resistivity lower than 0.8 MΩ·cm
Heat exchanger/primary & demineralised circuit
Machine circuit – demineralised water

Point 1

Point 2

Point 3

Point 4

Point 5

Point 6

Point 7

Point 8

SECTOR 1-2 SECTOR 2-3 SECTOR 3-4 SECTOR 4-5 SECTOR 5-6 SECTOR 6-7 SECTOR 7-8

Machine circuit – demineralised water

Desy workshop
20.04.2004
Tunnel pipes
Chilled and Mixed water
Point 5
Chilled / Mixed water

Temperatures:

Chilled water: 5/11 °C
Mixed water: 13/18 °C
Clean and waste water
Clear water reject
Cooling equipment

<table>
<thead>
<tr>
<th></th>
<th>LHC</th>
<th>CERN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling towers</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Chilled water plants</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Pumping stations</td>
<td>12</td>
<td>42</td>
</tr>
<tr>
<td>Pipes length (km)</td>
<td>520</td>
<td>1200</td>
</tr>
<tr>
<td>Pumps</td>
<td>120</td>
<td>540</td>
</tr>
<tr>
<td>Air compressors</td>
<td>22</td>
<td>50</td>
</tr>
</tbody>
</table>

Desy workshop
20.04.2004
Layer 3: TCR remote monitoring

Layer 2: Inter-point communication and local process supervision

Layer 1: Process control

Desy workshop
20.04.2004
Local supervision
Level 3
Central supervision - TCR (Meyrin)

24/24h - 365 days per year
2 teams, 14 operators
30 000 alarms
100 000 variables
LHC recovery & environment